A1 Mathematical Methods I

HILARY TERM 2018
THURSDAY, 11 JANUARY 2018, 9.30am to 11.30am

Candidates should submit answers to a maximum of four questions that include an answer to at least one question in each section.

Please start the answer to each question in a new booklet.
All questions will carry equal marks.

Do not turn this page until you are told that you may do so

Section A: Applied Partial Differential Equations

1. (a) [10 marks] Consider the PDE

$$
\begin{equation*}
a u_{x}+b u_{y}=c \tag{1}
\end{equation*}
$$

where a, b, and c are constants.
(i) By applying the method of characteristics with arbitrary initial data, give a parametric form of the general solution.
(ii) Obtain the general solution as the intersection of two families of surfaces by integrating

$$
\frac{d x}{a}=\frac{d y}{b}=\frac{d u}{c} .
$$

(iii) Show that the two forms of solution obtained in parts (i) and (ii) are equivalent.
(b) [15 marks] Consider the following first order PDE

$$
x u_{x}+y u_{y}=1,
$$

along with boundary data $u=0$ on the curve $y=x^{2}+1, x>0$.
(i) Identify two separate segments of the boundary curve for which the data is Cauchy.
(ii) Obtain an explicit solution $u(x, y)$ for each segment, and give the domain of definition in each case.
2. (a) [10 marks] Given an nth order hyperbolic PDE for $\mathbf{u}(t, x) \in \mathbb{R}^{n}$

$$
\frac{\partial}{\partial t} \mathbf{P}(t, x, \mathbf{u})+\frac{\partial}{\partial x} \mathbf{Q}(t, x, \mathbf{u})=\mathbf{0}
$$

where \mathbf{P} and \mathbf{Q} are vector-valued functions, state the Rankine-Hugoniot condition for the slope of a shock and determine the number of incoming characteristics for the shock to be causal.
(b) [15 marks] Consider the following first order PDE

$$
\begin{equation*}
(t+1) u \frac{\partial u}{\partial t}+x \frac{\partial u}{\partial x}=0, \quad t>0 \tag{2}
\end{equation*}
$$

along with data

$$
u(x, 0)= \begin{cases}1 & \text { for } x<1 \\ 3 & \text { for } x>1\end{cases}
$$

(i) Show that (2) can be written in conservation form

$$
\frac{\partial P}{\partial t}+\frac{\partial Q}{\partial x}=R
$$

with

$$
P=\frac{1}{2}(t+1) u^{2}, \quad Q=x u
$$

Obtain the form of R.
(ii) Show that a shock exists along a curve $t=C(x)$, which you should determine.
(iii) Sketch the characteristic projections and shock curve. Is the shock causal?
3. (a) [12 marks] Consider the first order PDE system

$$
\mathbf{A}(x, y, \mathbf{u}) \frac{\partial \mathbf{u}}{\partial x}+\mathbf{B}(x, y, \mathbf{u}) \frac{\partial \mathbf{u}}{\partial y}=\mathbf{c}
$$

where $\mathbf{u} \in \mathbb{R}^{n}$ and \mathbf{A}, \mathbf{B} are given n by n matrices with smooth components.
(i) Defining characteristics as curves $\lambda=\frac{d y}{d x}$ across which \mathbf{u} is continuous but there can be jumps in \mathbf{u}_{x} and \mathbf{u}_{y}, derive the condition

$$
\begin{equation*}
\operatorname{det}(\mathbf{B}-\lambda \mathbf{A})=0 \tag{3}
\end{equation*}
$$

(ii) What does it mean for the system to be hyperbolic?
(iii) Let $n=2$ and suppose characteristics satisfy $\lambda^{+}=1, \lambda^{-}=-2$. Suppose \mathbf{u} is given on the data curve $x=0,0 \leqslant y \leqslant 2$, and that the solution remains bounded. Sketch the domain of definition.
(b) [13 marks] Consider the system

$$
\begin{aligned}
& \frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}=0 \\
& \frac{\partial u}{\partial y}-\frac{\partial v}{\partial x}=(u-v)^{2} .
\end{aligned}
$$

(i) Show that the characteristic directions are given by $\lambda=\frac{d y}{d x}= \pm 1$, and obtain the ODEs satisfied along the characteristics.
(ii) Obtain an explicit general solution for u and v in terms of two arbitrary functions.
4. Suppose that $u(x, y)$ satisfies

$$
\begin{equation*}
\mathcal{L} u:=\frac{\partial^{2} u}{\partial x \partial y}+a\left(\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}\right)+b u=0 \tag{4}
\end{equation*}
$$

where a and b are known functions of x and y, and

$$
\begin{equation*}
x=x_{0}(s), y=y_{0}(s), u=u_{0}(s), \frac{\partial u}{\partial n}=v_{0}(s) \tag{5}
\end{equation*}
$$

on a smooth and differentiable curve $\Gamma(s)=\Gamma\left(x_{0}(s), y_{0}(s)\right)$.
(a) [10 marks] Formulate a problem for the Riemann function $R(x, y ; \xi, \eta)$ and determine an integral representation for the solution of (4), (5) in terms of the Riemann function R, u and its partial derivatives on $\Gamma(s)$, and the function a.
[You may use without proof the identity

$$
\begin{aligned}
R\left[u_{x y}+a u_{x}+a u_{y}\right. & +b u]-u\left[R_{x y}-\partial_{x}(a R)-\partial_{y}(a R)+b R\right] \\
& \left.=\partial_{x}\left(R u_{y}+a u R\right)+\partial_{y}\left(-u R_{x}+a u R\right) .\right]
\end{aligned}
$$

(b) [15 marks] Consider the following partial differential equation for $U(z, t)$:

$$
z^{2}\left(\frac{\partial^{2} U}{\partial t^{2}}-\frac{\partial^{2} U}{\partial z^{2}}\right)-4 z \frac{\partial U}{\partial z}-2 U=0
$$

(i) Restricting to the domain $z>0$, determine the characteristic coordinates $x(z, t)$, $y(z, t)$, and transform the problem to canonical form, so that $U(z, t)=u(x, y)$, say.
(ii) Determine the Riemann function $R(x, y ; \xi, \eta)$ for the transformed problem. [Hint: seek a solution in the form

$$
R(x, y ; \xi, \eta)=f\left(\frac{x+y}{\xi+\eta}\right)
$$

Section B: Supplementary Mathematical Methods

5. (a) The differential operator L is defined by $\left({ }^{\prime}=\mathrm{d} / \mathrm{d} x\right)$

$$
L y \equiv y^{\prime \prime}(x)
$$

on $0<x<1$.
(i) [8 marks] Find the eigenvalues λ_{k} and corresponding eigenfunctions y_{k} of

$$
L y_{k}=\lambda_{k} y_{k}
$$

with boundary conditions

$$
y(0)=0, \quad y^{\prime}(1)=0 .
$$

(ii) [7 marks] Determine for which α and β the boundary value problem

$$
y^{\prime \prime}+\frac{\pi^{2}}{4} y=0, \quad y(0)=\alpha, \quad y^{\prime}(1)=\beta,
$$

has solutions, and when the solution is unique.
(b) The differential operator M is defined on $-1<x<1$ by

$$
M y \equiv \begin{cases}y^{\prime \prime}(x) & \text { for }-1<x<0 \\ y^{\prime \prime}(x)-y(x) & \text { for } 0 \leqslant x<1\end{cases}
$$

with boundary conditions

$$
y(-1)=0, \quad y(1)=0 .
$$

(i) [5 marks] Show that the bounded eigenfunctions y for

$$
M y=\lambda y
$$

satisfy

$$
\left[y^{\prime}\right]_{-}^{+}=0, \quad[y]_{-}^{+}=0 \quad \text { at } x=0,
$$

where $[y]_{-}^{+}=\lim _{\varepsilon \rightarrow 0} y(\varepsilon)-\lim _{\varepsilon \rightarrow 0} y(-\varepsilon), \varepsilon>0$, denotes the jump of y across $x=0$.
(ii) [5 marks] Give approximate values for large negative eigenvalues λ.
[Hint: Formulate an approximate eigenvalue problem for large negative eigenvalues λ, giving reasons for your choice.]
6. (a) (i) [5 marks] Find the general solution of the linear differential equation:

$$
\begin{equation*}
L y \equiv 4 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-8 \frac{\mathrm{~d} y}{\mathrm{~d} x}+3 y=0 \tag{6}
\end{equation*}
$$

for $0<x<2$.
(ii) [11 marks] Consider the boundary value problem

$$
\begin{equation*}
L y(x)=f(x), \quad 0<x<2, \quad y(0)+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}(0)=0, \quad 3 y(2)-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}(2)=0, \tag{7}
\end{equation*}
$$

with $L y$ as in (6). Write down two equivalent problems for the Green's function $g(x, \xi)$:
(I) using the delta function $\delta(x)$;
(II) using only classical functions and with appropriate conditions at $x=\xi$.

Determine $g(x, \xi)$ explicitly.
(b) [9 marks] State what it means that a sequence of distributions $u_{N}, N=1,2, \ldots$ converges to another distribution u as $N \rightarrow \infty$.
For integer $N \geqslant 0$, let

$$
f_{N}(x)= \begin{cases}\sum_{j=1}^{N}(-1)^{j} \sin ((2 j+1) x) & \text { for } 0<x<\pi \\ 0 & \text { otherwise }\end{cases}
$$

Show that f_{N} converges to $\alpha \delta(x-\pi / 2)$, where δ is the delta distribution, and α is a constant that you need to determine.
[Hint: You can expand a test function ϕ into a sine series $\phi(x)=\sum_{j=1}^{\infty} c_{j} \sin (j x)$, and you can use, without proof, that this series converges pointwise for every $0<x<\pi$.]

